Publications
2023
- Arlind Kadra, Maciej Janowski, Martin Wistuba, Josif Grabocka
Power Laws for Hyperparameter Optimization
Thirty-Seventh Annual Conference on Neural Information Processing Systems (NeurIPS 2023) - Sebastian Pineda Arango, Josif Grabocka
Deep Pipeline Embeddings for AutoML
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023) - Abdus Khazi, Sebastian Pineda Arango, Josif Grabocka
Deep Ranking Ensembles for Hyperparameter Optimization
International Conference on Learning Representations (ICLR 2023) - Gresa Shala, Thomas Elsken, Hadi Jomaa, Frank Hutter, Josif Grabocka
Transfer NAS with Meta-Learned Bayesian Surrogates
International Conference on Learning Representations (ICLR 2023) - Gresa Shala, Andre Biedenkapp, Frank Hutter, Josif Grabocka
Gray-Box Gaussian Processes for Automated Reinforcement Learning
International Conference on Learning Representations (ICLR 2023)
2022
- Martin Wistuba, Arlind Kadra, Josif Grabocka (link)
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Thirty-Sixth Annual Conference on Neural Information Processing Systems (NeurIPS 2022) -
Ekrem Öztürk, Fabio Ferreira, Hadi Jomaa, Josif Grabocka and Frank Hutter (link)
Zero-shot AutoML with Pretrained Models
International Conference on Machine Learning (ICML 2022)
- Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, Frank Hutter (arXiv)
Transformers Can Do Bayesian Inference
International Conference on Learning Representations (ICLR 2022)
2021
-
Sebastian Pineda Arango, Hadi Samer Jomaa, Martin Wistuba, Josif Grabocka (arXiv)
HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML
Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems, Datasets and Benchmarks Track (NeurIPS 2021) - Arlind Kadra, Marius Lindauer, Frank Hutter, Josif Grabocka (arXiv)
Well-tuned Simple Nets Excel on Tabular Datasets
Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021)
-
Michael Ruchte, Josif Grabocka. (arXiv)
Scalable Pareto Front Approximation for Deep Multi-Objective Learning.
Proceedings of the IEEE International Conference on Data Mining (ICDM 2021).
- Shayan Jawed, Hadi Jomaa, Lars Schmidt-Thieme and Josif Grabocka.
Multi-task Learning Curve Forecasting Across Hyperparameter Configurations and Datasets.
Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML 2021).
-
Ahmed Rashed, Lars Schmidt-Thieme and Josif Grabocka.
A Guided Learning Approach for Item Recommendation via Surrogate Loss Learning.
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2021). - Wistuba, M., and Grabocka J. (2021), February. (pdf)
Few-Shot Bayesian Optimization with Deep Kernel Surrogates.
In the Ninth International Conference on Learning Representations (ICLR 2021).
2020
- Jomaa, H. S., Schmidt-Thieme, L., & Grabocka, J. (2020). (arXiv)
Dataset2vec: Learning dataset meta-features.
In Journal of Data Mining and Knowledge Discovery. - Jawed, S., Grabocka, J. and Schmidt-Thieme, L., 2020, May. (pdf)
Self-supervised Learning for Semi-supervised Time Series Classification.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 499-511). Springer, Cham. - Drumond, R.R., Brinkmeyer, L., Grabocka, J. and Schmidt-Thieme, L., 2020. (pdf)
HIDRA: Head Initialization across Dynamic targets for Robust Architectures.
In Proceedings of the 2020 SIAM International Conference on Data Mining (pp. 397-405). Society for Industrial and Applied Mathematics.
2019
- Rashed, A., Grabocka, J. and Schmidt-Thieme, L., 2019, September. (pdf)
Attribute-aware non-linear co-embeddings of graph features.
In Proceedings of the 13th ACM Conference on Recommender Systems (pp. 314-321). - Yalavarthi, V.K., Grabocka, J., Mandalapu, H. and Schmidt-Thieme, L., 2019, September. (pdf)
Gait Verification using Deep Learning with a Pairwise Loss.
In 2019 International Conference of the Biometrics Special Interest Group (BIOSIG) (pp. 1-7). IEEE. - Jameel, M., Grabocka, J. and Schmidt-Thieme, L., 2019, September. (pdf)
Ring-Star: A Sparse Topology for Faster Model Averaging in Decentralized Parallel SGD.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 333-341). Springer, Cham. - Rashed, A., Jawed, S., Rehberg, J., Grabocka, J., Schmidt-Thieme, L. and Hintsches, A., 2019, September. (pdf)
A Deep Multi-task Approach for Residual Value Forecasting.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 467-482). Springer, Cham. - Rashed, A., Grabocka, J. and Schmidt-Thieme, L., 2019, July. (pdf)
Multi-Relational Classification via Bayesian Ranked Non-Linear Embeddings.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1132-1140). - Jomaa, H.S., Grabocka, J., Schmidt-Thieme, L. and Borek, A., 2019, July. (pdf)
A Hybrid Convolutional Approach for Parking Availability Prediction.
In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE. - Rashed, A., Grabocka, J. and Schmidt-Thieme, L., 2019, February. (pdf)
Weighted Personalized Factorizations for Network Classification with Approximated Relation Weights.
In International Conference on Agents and Artificial Intelligence (pp. 100-117). Springer, Cham. - Grabocka, J., Scholz, R. and Schmidt-Thieme, L., 2019. (arXiv)
Learning surrogate losses.
arXiv preprint arXiv:1905.10108. - Jomaa, H.S., Schmidt-Thieme, L. and Grabocka, J., 2019. (arXiv)
Dataset2vec: Learning dataset meta-features.
arXiv preprint arXiv:1905.11063. - Brinkmeyer, L., Drumond, R.R., Scholz, R., Grabocka, J. and Schmidt-Thieme, L., 2019. (arXiv)
Chameleon: Learning model initializations across tasks with different schemas.
arXiv preprint arXiv:1909.13576. - Jomaa, H.S., Grabocka, J. and Schmidt-Thieme, L., 2019. (arXiv)
Hyp-rl: Hyperparameter optimization by reinforcement learning.
arXiv preprint arXiv:1906.11527. - Jawed, S., Boumaiza, E., Grabocka, J. and Schmidt-Thieme, L., 2019. (arXiv)
Data-driven vehicle trajectory forecasting.
arXiv preprint arXiv:1902.05400. - Rashed, A., Grabocka, J. and Schmidt-Thieme, L., 2019. (arXiv)
Multi-label network classification via weighted personalized factorizations.
arXiv preprint arXiv:1902.09294. - Rego Drumond, R., Brinkmeyer, L., Grabocka, J. and Schmidt-Thieme, L., 2019. (arXiv)
HIDRA: Head Initialization across Dynamic targets for Robust Architectures.
arXiv, pp.arXiv-1910. - Jomaa, H.S., Grabocka, J. and Schmidt-Thieme, L., 2019. (arXiv)
In Hindsight: A Smooth Reward for Steady Exploration.
arXiv preprint arXiv:1906.09781. - Falkner, J., Grabocka, J. and Schmidt-Thieme, L., 2019. (pdf)
Atomic Compression Networks.
- Feurer, M., van Rijn, J.N., Kadra, A., Gijsbers, P., Mallik, N., Ravi, S., Müller, A., Vanschoren, J. and Hutter, F., 2019. (arXiv)
OpenML-Python: an extensible Python API for OpenML.
arXiv preprint arXiv:1911.02490.
2018
- Grabocka, J. and Schmidt-Thieme, L., 2018. Neuralwarp. (arXiv)
Time-series similarity with warping networks.
arXiv preprint arXiv:1812.08306.
2017
- Nguyen, H.T., Wistuba, M., Grabocka, J., Drumond, L.R. and Schmidt-Thieme, L., 2017, May. (pdf)
Personalized deep learning for tag recommendation.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 186-197). Springer, Cham. - Raychaudhuri, D.S., Grabocka, J. and Schmidt-Thieme, L., 2017. (arXiv)
Channel masking for multivariate time series shapelets.
arXiv preprint arXiv:1711.00812.
2016
- Shah, M., Grabocka, J., Schilling, N., Wistuba, M. and Schmidt-Thieme, L., 2016, March. (pdf)
Learning DTW-shapelets for time-series classification.
In Proceedings of the 3rd IKDD Conference on Data Science, 2016 (pp. 1-8). - Grabocka, J., Schilling, N. and Schmidt-Thieme, L., 2016. (pdf)
Latent time-series motifs.
ACM Transactions on Knowledge Discovery from Data (TKDD), 11(1), pp.1-20. - Grabocka, J., Wistuba, M. and Schmidt-Thieme, L., 2016. (pdf)
Fast classification of univariate and multivariate time series through shapelet discovery.
Knowledge and information systems, 49(2), pp.429-454. - Grabocka, J., 2016. (pdf)
Invariant Features For Time-Series Classification
(Doctoral dissertation, Universität Hildesheim).
2015
- Wistuba, M., Grabocka, J. and Schmidt-Thieme, L., 2015. (arXiv)
Ultra-fast shapelets for time series classification.
arXiv preprint arXiv:1503.05018. - Grabocka, J. and Schmidt-Thieme, L., 2015. (pdf)
Learning through non-linearly supervised dimensionality reduction.
In Transactions on Large-Scale Data-and Knowledge-Centered Systems XVII (pp. 74-96). Springer, Berlin, Heidelberg.
2014
- Grabocka, J., Dalkalitsis, A., Lois, A., Katsaros, E. and Schmidt-Thieme, L., 2014, October. (pdf)
Realistic optimal policies for energy-efficient train driving.
In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 629-634). IEEE. - Grabocka, J., Schilling, N., Wistuba, M. and Schmidt-Thieme, L., 2014, August. (pdf)
Learning time-series shapelets.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 392-401). - Grabocka, J., Bedalli, E. and Schmidt-Thieme, L., 2014, May. (pdf)
Supervised nonlinear factorizations excel in semi-supervised regression.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 188-199). Springer, Cham. - Grabocka, J., Wistuba, M. and Schmidt-Thieme, L., 2014. (pdf)
Scalable classification of repetitive time series through frequencies of local polynomials.
IEEE Transactions on Knowledge and Data Engineering, 27(6), pp.1683-1695. - Grabocka, J. and Schmidt-Thieme, L., 2014. (pdf)
Invariant time-series factorization.
Data mining and knowledge discovery, 28(5-6), pp.1455-1479.
2013
- Grabocka, J., Drumond, L. and Schmidt-Thieme, L., 2013, August. (pdf)
Supervised dimensionality reduction via nonlinear target estimation.
In International Conference on Data Warehousing and Knowledge Discovery (pp. 172-183). Springer, Berlin, Heidelberg.
2012
- Grabocka, J., Nanopoulos, A. and Schmidt-Thieme, L., 2012, September. (pdf)
Invariant time-series classification.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 725-740). Springer, Berlin, Heidelberg. - Grabocka, J., Bedalli, E. and Schmidt-Thieme, L., 2012, September. (pdf)
Efficient classification of long time-series.
In International Conference on ICT Innovations (pp. 47-57). Springer, Berlin, Heidelberg. - Grabocka, J., Nanopoulos, A. and Schmidt-Thieme, L., 2012, July. (pdf)
Classification of sparse time series via supervised matrix factorization.
In Twenty-Sixth AAAI Conference on Artificial Intelligence.